fork download
  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. #define endl '\n'
  4. #define int long long int
  5. const int MOD = 1000000007;
  6. const int MOD2 = 998244353;
  7. const int INF = LLONG_MAX / 2;
  8. const int MAXN = 100000;
  9. int primes[1000000];
  10.  
  11. /*void seive() {
  12.   fill(primes, primes + 1000000, 1);
  13.   primes[0] = primes[1] = 0;
  14.   for (int i = 2; i * i < 1000000; i++) {
  15.   if (primes[i]) {
  16.   for (int j = i * i; j < 1000000; j += i) {
  17.   primes[j] = 0;
  18.   }
  19.   }
  20.   }
  21. }
  22.  
  23. bool isPrime(int n) {
  24.   if (n <= 1) return false;
  25.   for (int i = 2; i * i <= n; i++) {
  26.   if (n % i == 0) return false;
  27.   }
  28.   return true;
  29. }
  30.  
  31. int gcd(int a, int b) {
  32.   if (a == 0) return b;
  33.   return gcd(b % a, a);
  34. }*/
  35.  
  36. int power(int a, int b, int mod) {
  37. int res = 1;
  38. a %= mod;
  39. while (b > 0) {
  40. if (b & 1) res = res * a % mod;
  41. a = a * a % mod;
  42. b >>= 1;
  43. }
  44. return res;
  45. }
  46.  
  47. // nCr % MOD for n < MOD
  48. int nCrModP(int n, int r) {
  49. if (r > n) return 0;
  50. if (r == 0 || r == n) return 1;
  51.  
  52. int numerator = 1, denominator = 1;
  53. for (int i = 0; i < r; i++) {
  54. numerator = (numerator * (n - i)) % MOD;
  55. denominator = (denominator * (i + 1)) % MOD;
  56. }
  57. return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
  58. }
  59.  
  60. // Lucas's Theorem
  61. int lucas(int n, int r) {
  62. if (r == 0) return 1;
  63. return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
  64. }
  65. bool isPossible(int A[] , int n , int mid , int k){
  66. int temp[n];
  67. for(int i = 0; i < n; i++) {
  68. temp[i] = A[i];
  69. }
  70. for(int i = 0 ; i < n ; i++){
  71. if(temp[i]<=mid){
  72. int d = mid-temp[i];
  73. k -= d;
  74. }
  75. }
  76. return k<=0;
  77. }
  78. void bfs(int node , vector<int>A[] , int visited[] , int &cnt){
  79. queue<int>q;
  80. q.push(node);
  81. visited[node] = true;
  82. cnt++;
  83. while(!q.empty()){
  84. int node = q.front();
  85. q.pop();
  86. for(auto node1 : A[node]){
  87. if(!visited[node1]){
  88. cnt++;
  89. visited[node1] = true;
  90. q.push(node1);
  91. }
  92. }
  93. }
  94. }
  95. void solve() {
  96. int n;
  97. cin>>n;
  98. int B[n+1][2];
  99. int colors[n+1];
  100. vector<int>A[n+1];
  101. int visited[n+1];
  102. fill(visited,visited+n+1,false);
  103. for(int i = 0 ; i<n-1 ; i++){
  104. int u,v;
  105. cin>>u>>v;
  106. B[i][0] = u;
  107. B[i][1] = v;
  108. }
  109. for(int i = 1 ; i<=n ; i++){
  110. cin>>colors[i];
  111. }
  112. for(int i = 0 ; i<n-1 ; i++){
  113. if(colors[B[i][0]]==colors[B[i][1]]){
  114. A[B[i][0]].push_back(B[i][1]);
  115. A[B[i][1]].push_back(B[i][0]);
  116. }
  117. }
  118. int sum = 0;
  119. for(int i = 1 ; i<=n ; i++){
  120. if(!visited[i]){
  121. int cnt = 0;
  122. bfs(i,A,visited,cnt);
  123. if(cnt>=3){
  124. sum += ((cnt-1)*(cnt-2))/2;
  125. }
  126. }
  127. }
  128. cout<<sum<<endl;
  129. }
  130.  
  131. signed main() {
  132. ios::sync_with_stdio(false); cin.tie(NULL);
  133. //int t;
  134. //cin >> t;
  135. //while (t--) {
  136. solve();
  137. //}
  138. return 0;
  139. }
  140.  
Success #stdin #stdout 0.01s 5320KB
stdin
6
1 2
2 3
2 4
1 5
5 6
0 1 1 1 0 0
stdout
2