#include <iostream>
#include <fstream>
#include <cmath>
#include <vector>
#include <iomanip>
using namespace std;
// Constants for the Lorenz system
const double sigma = 10.0;
const double rho = 28.0;
const double beta = 8.0 / 3.0;
// Lorenz equations
vector<double> lorenz(double x, double y, double z) {
vector<double> dxdt(3);
dxdt[0] = sigma * (y - x);
dxdt[1] = x * (rho - z) - y;
dxdt[2] = x * y - beta * z;
return dxdt;
}
// Euler method to solve the Lorenz system
void euler_method(double x0, double y0, double z0, double dt, double t_max, const string& filename_prefix) {
double t = 0.0;
double x = x0, y = y0, z = z0;
int frame = 0;
// Loop through time and output the state to files
while (t < t_max) {
stringstream filename;
filename << filename_prefix << setw(4) << setfill('0') << frame << ".dat"; // Generate frame filename
ofstream file(filename.str());
file << x << " " << y << " " << z << endl;
file.close();
// Compute the next state using the Lorenz equations
vector<double> dxdt = lorenz(x, y, z);
x += dxdt[0] * dt;
y += dxdt[1] * dt;
z += dxdt[2] * dt;
t += dt;
frame++;
}
}
int main() {
// Initial conditions
double x0 = 0.0, y0 = 1.0, z0 = 1.05;
double dt = 0.01; // Time step
double t_max = 100.0; // Total time
// Run the simulation and generate data for animation
euler_method(x0, y0, z0, dt, t_max, "lorenz_frame_");
return 0;
}
I2luY2x1ZGUgPGlvc3RyZWFtPgojaW5jbHVkZSA8ZnN0cmVhbT4KI2luY2x1ZGUgPGNtYXRoPgojaW5jbHVkZSA8dmVjdG9yPgojaW5jbHVkZSA8aW9tYW5pcD4KCnVzaW5nIG5hbWVzcGFjZSBzdGQ7CgovLyBDb25zdGFudHMgZm9yIHRoZSBMb3Jlbnogc3lzdGVtCmNvbnN0IGRvdWJsZSBzaWdtYSA9IDEwLjA7CmNvbnN0IGRvdWJsZSByaG8gPSAyOC4wOwpjb25zdCBkb3VibGUgYmV0YSA9IDguMCAvIDMuMDsKCi8vIExvcmVueiBlcXVhdGlvbnMKdmVjdG9yPGRvdWJsZT4gbG9yZW56KGRvdWJsZSB4LCBkb3VibGUgeSwgZG91YmxlIHopIHsKICAgIHZlY3Rvcjxkb3VibGU+IGR4ZHQoMyk7CiAgICBkeGR0WzBdID0gc2lnbWEgKiAoeSAtIHgpOwogICAgZHhkdFsxXSA9IHggKiAocmhvIC0geikgLSB5OwogICAgZHhkdFsyXSA9IHggKiB5IC0gYmV0YSAqIHo7CiAgICByZXR1cm4gZHhkdDsKfQoKLy8gRXVsZXIgbWV0aG9kIHRvIHNvbHZlIHRoZSBMb3Jlbnogc3lzdGVtCnZvaWQgZXVsZXJfbWV0aG9kKGRvdWJsZSB4MCwgZG91YmxlIHkwLCBkb3VibGUgejAsIGRvdWJsZSBkdCwgZG91YmxlIHRfbWF4LCBjb25zdCBzdHJpbmcmIGZpbGVuYW1lX3ByZWZpeCkgewogICAgZG91YmxlIHQgPSAwLjA7CiAgICBkb3VibGUgeCA9IHgwLCB5ID0geTAsIHogPSB6MDsKICAgIGludCBmcmFtZSA9IDA7CgogICAgLy8gTG9vcCB0aHJvdWdoIHRpbWUgYW5kIG91dHB1dCB0aGUgc3RhdGUgdG8gZmlsZXMKICAgIHdoaWxlICh0IDwgdF9tYXgpIHsKICAgICAgICBzdHJpbmdzdHJlYW0gZmlsZW5hbWU7CiAgICAgICAgZmlsZW5hbWUgPDwgZmlsZW5hbWVfcHJlZml4IDw8IHNldHcoNCkgPDwgc2V0ZmlsbCgnMCcpIDw8IGZyYW1lIDw8ICIuZGF0IjsgLy8gR2VuZXJhdGUgZnJhbWUgZmlsZW5hbWUKICAgICAgICBvZnN0cmVhbSBmaWxlKGZpbGVuYW1lLnN0cigpKTsKICAgICAgICAKICAgICAgICBmaWxlIDw8IHggPDwgIiAiIDw8IHkgPDwgIiAiIDw8IHogPDwgZW5kbDsKICAgICAgICBmaWxlLmNsb3NlKCk7CgogICAgICAgIC8vIENvbXB1dGUgdGhlIG5leHQgc3RhdGUgdXNpbmcgdGhlIExvcmVueiBlcXVhdGlvbnMKICAgICAgICB2ZWN0b3I8ZG91YmxlPiBkeGR0ID0gbG9yZW56KHgsIHksIHopOwogICAgICAgIHggKz0gZHhkdFswXSAqIGR0OwogICAgICAgIHkgKz0gZHhkdFsxXSAqIGR0OwogICAgICAgIHogKz0gZHhkdFsyXSAqIGR0OwoKICAgICAgICB0ICs9IGR0OwogICAgICAgIGZyYW1lKys7CiAgICB9Cn0KCmludCBtYWluKCkgewogICAgLy8gSW5pdGlhbCBjb25kaXRpb25zCiAgICBkb3VibGUgeDAgPSAwLjAsIHkwID0gMS4wLCB6MCA9IDEuMDU7CiAgICBkb3VibGUgZHQgPSAwLjAxOyAgLy8gVGltZSBzdGVwCiAgICBkb3VibGUgdF9tYXggPSAxMDAuMDsgIC8vIFRvdGFsIHRpbWUKCiAgICAvLyBSdW4gdGhlIHNpbXVsYXRpb24gYW5kIGdlbmVyYXRlIGRhdGEgZm9yIGFuaW1hdGlvbgogICAgZXVsZXJfbWV0aG9kKHgwLCB5MCwgejAsIGR0LCB0X21heCwgImxvcmVuel9mcmFtZV8iKTsKCiAgICByZXR1cm4gMDsKfQo=