ZnJvbSBzeW1weSBpbXBvcnQgc3ltYm9scywgc29sdmUsIEVxLCBzcXJ0CgojIOmhjOebrjHvvJrlt7Lnn6UgYSArIGIgPSAyMO+8jOaxgiBhYiDmnIDlpKflgLwKYSwgYiwgeCA9IHN5bWJvbHMoJ2EgYiB4JykKYWJfZXhwciA9IDIwICogYSAtIGEqKjIKY3JpdGljYWxfcG9pbnQgPSBzb2x2ZShhYl9leHByLmRpZmYoYSksIGEpICAjIOaxguWwjuS4puino+WHuiBhCmFiX21heCA9IGFiX2V4cHIuc3VicyhhLCBjcml0aWNhbF9wb2ludFswXSkKCiMg6aGM55uuMu+8muinoyB8M3ggKyAxfCAmbGU7IDcKaW5lcV8xID0gc29sdmUoLTcgJmx0Oz0gMyp4ICsgMSwgeCkKaW5lcV8yID0gc29sdmUoMyp4ICsgMSAmbHQ7PSA3LCB4KQoKIyDpoYznm64z77ya6bueICg1LCAwKSDliLAgKDAsIDEyKSDot53pm6IKZGlzdGFuY2UgPSBzcXJ0KCgwIC0gNSkqKjIgKyAoMTIgLSAwKSoqMikKCiMg6aGM55uuNO+8muWMluewoSAmcmFkaWM7MTIgLyAoKDEgKyAmcmFkaWM7MikoNiAtICZyYWRpYzszKSkKZXhwcjQgPSBzcXJ0KDEyKS8oKDEgKyBzcXJ0KDIpKSAqICg2IC0gc3FydCgzKSkpCnNpbXBsaWZpZWRfZXhwcjQgPSBleHByNC5zaW1wbGlmeSgpCgojIOmhjOebrjXvvJrpu54gKDUsNCkg5YiwICgyLC0yKSDnmoTot53pm6IKZGlzdF81ID0gc3FydCgoNSAtIDIpKioyICsgKDQgLSAoLTIpKSoqMikKCiMg6aGM55uuNu+8muaqouafpeWTquS6m+m7nuS4jeWcqOaLi+eJqee3miB5ID0gLXheMiArIHggLSA1IOS4igpkZWYgaXNfb25fcGFyYWJvbGEoeF92YWwsIHlfdmFsKToKICAgIHJldHVybiB5X3ZhbCA9PSAteF92YWwqKjIgKyB4X3ZhbCAtIDUKCnRlc3RfcG9pbnRzID0gWygtMSwgLTcpLCAoMCwgLTUpLCAoMSwgLTYpLCAoMiwgLTcpXQpyZXN1bHRzID0gW2lzX29uX3BhcmFib2xhKHh2LCB5dikgZm9yIHh2LCB5diBpbiB0ZXN0X3BvaW50c10KCiMg5Y2w5Ye65omA5pyJ57WQ5p6cCnByaW50KCZxdW90O+mhjOebrjHmnIDlpKcgYWIg5YC877yaJnF1b3Q7LCBhYl9tYXgpCnByaW50KCZxdW90O+mhjOebrjIg56+E5ZyN77yaJnF1b3Q7LCBpbmVxXzEsICZxdW90O+iIhyZxdW90OywgaW5lcV8yKQpwcmludCgmcXVvdDvpoYznm64zIOi3nembou+8miZxdW90OywgZGlzdGFuY2UuZXZhbGYoKSkKcHJpbnQoJnF1b3Q76aGM55uuNCDljJbnsKHntZDmnpzvvJomcXVvdDssIHNpbXBsaWZpZWRfZXhwcjQuZXZhbGYoKSkKcHJpbnQoJnF1b3Q76aGM55uuNSDot53pm6LvvJomcXVvdDssIGRpc3RfNS5ldmFsZigpKQpwcmludCgmcXVvdDvpoYznm642IOWTquWAi+m7nuS4jeWcqOaLi+eJqee3muS4iu+8iEZhbHNl6KGo56S65LiN5Zyo77yJ77yaJnF1b3Q7LCByZXN1bHRzKQo=
from sympy import symbols, solve, Eq, sqrt
# 題目1:已知 a + b = 20,求 ab 最大值
a, b, x = symbols('a b x')
ab_expr = 20 * a - a**2
critical_point = solve(ab_expr.diff(a), a) # 求導並解出 a
ab_max = ab_expr.subs(a, critical_point[0])
# 題目2:解 |3x + 1| ≤ 7
ineq_1 = solve(-7 <= 3*x + 1, x)
ineq_2 = solve(3*x + 1 <= 7, x)
# 題目3:點 (5, 0) 到 (0, 12) 距離
distance = sqrt((0 - 5)**2 + (12 - 0)**2)
# 題目4:化簡 √12 / ((1 + √2)(6 - √3))
expr4 = sqrt(12)/((1 + sqrt(2)) * (6 - sqrt(3)))
simplified_expr4 = expr4.simplify()
# 題目5:點 (5,4) 到 (2,-2) 的距離
dist_5 = sqrt((5 - 2)**2 + (4 - (-2))**2)
# 題目6:檢查哪些點不在拋物線 y = -x^2 + x - 5 上
def is_on_parabola(x_val, y_val):
return y_val == -x_val**2 + x_val - 5
test_points = [(-1, -7), (0, -5), (1, -6), (2, -7)]
results = [is_on_parabola(xv, yv) for xv, yv in test_points]
# 印出所有結果
print("題目1最大 ab 值:", ab_max)
print("題目2 範圍:", ineq_1, "與", ineq_2)
print("題目3 距離:", distance.evalf())
print("題目4 化簡結果:", simplified_expr4.evalf())
print("題目5 距離:", dist_5.evalf())
print("題目6 哪個點不在拋物線上(False表示不在):", results)